Caching - In-Memory, Redis, s3, Redis Semantic Cache
Initialize Cache - In Memory, Redis, s3 Bucket, Redis Semantic Cache​
- redis-cache
- s3-cache
- redis-semantic cache
- in memory cache
Install redis
pip install redis
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache(type="redis", host=<host>, port=<port>, password=<password>)
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
# response1 == response2, response 1 is cached
Install boto3
pip install boto3
Set AWS environment variables
AWS_ACCESS_KEY_ID = "AKI*******"
AWS_SECRET_ACCESS_KEY = "WOl*****"
import litellm
from litellm import completion
from litellm.caching import Cache
# pass s3-bucket name
litellm.cache = Cache(type="s3", s3_bucket_name="cache-bucket-litellm", s3_region_name="us-west-2")
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
# response1 == response2, response 1 is cached
Install redis
pip install redisvl==0.0.7
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/
import litellm
from litellm import completion
from litellm.caching import Cache
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
print("testing semantic caching")
litellm.cache = Cache(
type="redis-semantic",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
similarity_threshold=0.8, # similarity threshold for cache hits, 0 == no similarity, 1 = exact matches, 0.5 == 50% similarity
redis_semantic_cache_embedding_model="text-embedding-ada-002", # this model is passed to litellm.embedding(), any litellm.embedding() model is supported here
)
response1 = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=20,
)
print(f"response1: {response1}")
random_number = random.randint(1, 100000)
response2 = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=20,
)
print(f"response2: {response1}")
assert response1.id == response2.id
# response1 == response2, response 1 is cached
Quick Start​
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
caching=True
)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}],
caching=True
)
# response1 == response2, response 1 is cached
Cache Context Manager - Enable, Disable, Update Cache​
Use the context manager for easily enabling, disabling & updating the litellm cache
Enabling Cache​
Quick Start Enable
litellm.enable_cache()
Advanced Params
litellm.enable_cache(
type: Optional[Literal["local", "redis"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
**kwargs,
)
Disabling Cache​
Switch caching off
litellm.disable_cache()
Updating Cache Params (Redis Host, Port etc)​
Update the Cache params
litellm.update_cache(
type: Optional[Literal["local", "redis"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
**kwargs,
)
Custom Cache Keys:​
Define function to return cache key
# this function takes in *args, **kwargs and returns the key you want to use for caching
def custom_get_cache_key(*args, **kwargs):
# return key to use for your cache:
key = kwargs.get("model", "") + str(kwargs.get("messages", "")) + str(kwargs.get("temperature", "")) + str(kwargs.get("logit_bias", ""))
print("key for cache", key)
return key
Set your function as litellm.cache.get_cache_key
from litellm.caching import Cache
cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
cache.get_cache_key = custom_get_cache_key # set get_cache_key function for your cache
litellm.cache = cache # set litellm.cache to your cache
Cache Initialization Parameters​
def __init__(
self,
type: Optional[Literal["local", "redis", "s3"]] = "local",
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"], # A list of litellm call types to cache for. Defaults to caching for all litellm call types.
# redis cache params
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
# s3 Bucket, boto3 configuration
s3_bucket_name: Optional[str] = None,
s3_region_name: Optional[str] = None,
s3_api_version: Optional[str] = None,
s3_path: Optional[str] = None, # if you wish to save to a spefic path
s3_use_ssl: Optional[bool] = True,
s3_verify: Optional[Union[bool, str]] = None,
s3_endpoint_url: Optional[str] = None,
s3_aws_access_key_id: Optional[str] = None,
s3_aws_secret_access_key: Optional[str] = None,
s3_aws_session_token: Optional[str] = None,
s3_config: Optional[Any] = None,
**kwargs,
):
Logging​
Cache hits are logged in success events as kwarg["cache_hit"]
.
Here's an example of accessing it:
import litellm
from litellm.integrations.custom_logger import CustomLogger
from litellm import completion, acompletion, Cache
# create custom callback for success_events
class MyCustomHandler(CustomLogger):
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
print(f"Value of Cache hit: {kwargs['cache_hit']"})
async def test_async_completion_azure_caching():
# set custom callback
customHandler_caching = MyCustomHandler()
litellm.callbacks = [customHandler_caching]
# init cache
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
unique_time = time.time()
response1 = await litellm.acompletion(model="azure/chatgpt-v-2",
messages=[{
"role": "user",
"content": f"Hi 👋 - i'm async azure {unique_time}"
}],
caching=True)
await asyncio.sleep(1)
print(f"customHandler_caching.states pre-cache hit: {customHandler_caching.states}")
response2 = await litellm.acompletion(model="azure/chatgpt-v-2",
messages=[{
"role": "user",
"content": f"Hi 👋 - i'm async azure {unique_time}"
}],
caching=True)
await asyncio.sleep(1) # success callbacks are done in parallel